Independence number, connectivity and fractional (g,f)-factors in graphs
نویسندگان
چکیده
منابع مشابه
Independence Free Graphs and Vertex Connectivity Augmentation
Given an undirected graph G and a positive integer k, the k-vertex-connectivity augmentation problem is to find a smallest set F of new edges for which G + F is k-vertex-connected. Polynomial algorithms for this problem have been found only for k≤ 4 and a major open question in graph connectivity is whether this problem is solvable in polynomial time in general. In this paper we develop an algo...
متن کاملIndependence Number and Disjoint Theta Graphs
The goal of this paper is to find vertex disjoint even cycles in graphs. For this purpose, define a θ-graph to be a pair of vertices u, v with three internally disjoint paths joining u to v. Given an independence number α and a fixed integer k, the results contained in this paper provide sharp bounds on the order f(k, α) of a graph with independence number α(G) ≤ α which contains no k disjoint ...
متن کاملOn the k-independence number in graphs
For an integer k ≥ 1 and a graph G = (V,E), a subset S of V is kindependent if every vertex in S has at most k − 1 neighbors in S. The k-independent number βk(G) is the maximum cardinality of a kindependent set of G. In this work, we study relations between βk(G), βj(G) and the domination number γ(G) in a graph G where 1 ≤ j < k. Also we give some characterizations of extremal graphs.
متن کاملThe augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملMaximum fractional factors in graphs
We prove that fractional k-factors can be transformed among themselves by using a new adjusting operation repeatedly. We introduce, analogous to Berge’s augmenting path method in matching theory, the technique of increasing walk and derive a characterization of maximum fractional k-factors in graphs. As applications of this characterization, several results about connected fractional 1-factors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2015
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1504757b